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Introduction

= Objective: analyzing taxi demand and taxi traffic flow in New York City

= Dataset: Yellow taxi trip record data of Aug 2024 ( provided by the NYC TLC)

= Data published on the TLC website, separated by year, month and vehicle type
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TLC Trip Record Data

Yellow and green taxi trip records include fields capturing pick-up and drop-off dates/times, pick-
up and drop-off locations, trip distances, itemized fares, rate types, payment types, and driver-
reported passenger counts. The data used in the attached datasets were collected and provided
to the NYC Taxi and Limousine Commission (TLC) by technology providers authorized under the
Taxicab & Livery Passenger Enhancement Programs (TPEP/LPEP). The trip data was not created
by the TLC, and TLC makes no representations as to the accuracy of these data.
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January

« Yellow Taxi Trip Records (PARQUET)

« Green Taxi Trip Records (PARQUET)

= For-Hire Vehicle Trip Records
(PARQUET)

= High Volume For-Hire Vehicle Trip
Records (PARQUET)

February

+ Yellow Taxi Trip Records (PARQUET)

+ Green Taxi Trip Records (PARQUET)

+ For-Hire Vehicle Trip Records
(PARQUET)

» High Volume For-Hire Vehicle Trip
Records (PARQUET)

July

« Yellow Taxi Trip Records (PARQUET)

« Green Taxi Trip Records (PARQUET)

« For-Hire Vehicle Trip Records
(PARQUET)

« High Volume For-Hire Vehicle Trip
Records (FARQUET)

August

« Yellow Taxi Trip Records (PARQUET)

« Green Taxi Trip Records (PARQUET)

« For-Hire Vehicle Trip Records
(PARQUET)

« High Volume For-Hire Vehicle Trip
Records (FPARQUET)



https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Vehicle Types

For-hire High-
Vehicles volume

(FHVSs) FHVs

=  "Traditional" taxi (respond to street hails) = Vehicles do not respond to street hails
= Morereliable data collection system (collected = Data collected & provided by third-party
by TLC-authorized technology providers) corporations

Target narrowed down to Yellow and Green Taxi trip records



Vehicle Types (continued)

Yellow & Green Taxi Trip Counts, Jan 2024

BRONX
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= Green taxi has very small trip counts (2% of total taxi trips)
=  Mainly covers outer boroughs (cannot pick up new passengers in "yellow zone")

= Green Taxi trip record data does not fit our purpose, and is neglectable in size



This data dictionary describes yellow taxi trip data. For a dictionary describing green taxi data, or a map

Yellow Taxi Trip Data

of the TLC Taxi Zones, please visit http://www.nyc.gov/html/tlc/html/about/trip record data.shtml.

Field Name Description
VendorID A code indicating the TPEP provider that provided the record.
1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.
vendor_namefll Trip_Pickup_DateTime Trip_Dropoff_DateTime Passenger_Count Trip_Distance Start_Lon Start_Lat | Rate_Code tpep_pickup_datetime The date and time when the meter was engaged.
— tpep_dropoff_datetime The date and time when the meter was disengaged.
1 VTS 2009-01-04 02:52:00 2009-01-04 03:02:00 1 2.63 -73.99196 40.72157 Passenger_count The number of passengers in the vehicle
2 VTS 2009-01-04 03:31:00 2009-01-04 03:38:00 3 4.55 -73.98210 40.73629 - ’
3 VTS 2009-01-03 15:43:00 2009-01-03 15:57:00 5 10.35 W -74.00259 40.73975 This is a driver-entered value.
4 DDS 2009-01-01 20:52:58 2009-01-01 21:14:00 1 5.00 -73.97427 40.79095 Trip_distance The elapsed trip distance in miles reported by the taximeter.
S DDS 2009-01-24 16:18:23 2009-01-24 16:24:56 1 0.40 -74.00158 40.71938 PULocationID TLC Taxi Zone in which the taximeter was engaged
6 DDS 2009-01-16 22:35:59 2009-01-16 22:43:35 2 1.20 [l -73.98981 40.73501 DOLocationlD TLC Taxi Zone in which the taximeter was disengaged
RateCodelD The final rate code in effect at the end of the trip.
v 1= Standard rate
P store_and_forward End_Lon Fare_Amt surcharge mta_tax Tip_Amt Tolls_Amt Total_Amt :=LFK N
C =Newar!
-73.99380 8.9 0.5 0.00 0 9.40 4=Nassau or Westchester
-73.95585 i 121 05 2.00 0 14.60 :=:eg"“a_t§d fare
= = =Group ride
-73.86998 23.7 0.0 4.74 0 2844 Store_and_fwd_flag This flag indicates whether the trip record was held in vehicle
-73.99656 14.9 0.5 3.05 0 18.45 memory before sending to the vendor, aka “store and forward,”
-74.00838 3.7 0.0 0.00 0 3.70 because the vehicle did not have a connection to the server.
-73.98502 / 6.1 0.5 0.00 0 6.60
Y= store and forward trip
N= not a store and forward trip
= Raw dataset (old version; left) consists of 18 columns, including key variables representing temporal
(Pickup/Dropoff Date & Time) and spatial (Pickup/Dropoff coordinates) information.
= Eachrowis a yellow taxi trip record
. . . . n . n . . .
= The TLC has replaced pickup/dropoff location details with "taxi zone" ID information for records since 2011
|

Our goalis to analyze recent taxi demand patterns; need to work with the new format by generating
(approximate) coordinates to perform spatial analysis




Yellow Taxi Data (continued)

NYC Yellow Cab PU/DO Locations with Zone Boundaries

Latitude

“ OBIECTID Fhape_Leng Shape_Area one LocationdD prgugh promeiry
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PULocationlD DOLocationlD PU_Longitude PU_Latitude DO_Longitude DO_Latitude

) > <dbl= <dbl= <dbl= <dbl=

f — 237 161 -73.96563 40.76862 -73.97770 40.75803
@ ' 100 186 -73.93879 40.75351 -73.99244 40.74850
161 114 -73.97770 40.75803 -73.99738 40.72834

100 13 -73.98879 40.75351 -74.01608 40.71204

e : 75 75 -73.94575 40.79001 -73.94575 40.78001

,_"o‘“m_';',mde o 163 162 -73.97757 40.76442 -73.97236 40.75669

= The TLC also provides taxi zone details; great asset for calculating centroid coordinates and visualization
= NYC isdivided into 263 taxi zones; centroid coordinates are acceptable alternative for exact coordinates

= Columns have shape & geometric information, zone name, location ID, borough name
= PU_Longitude/Latitude, DO_Longitude/Latitude columns, each working as a pair, are mutated and merged
to the Yellow Taxi Trip Dataset with PULocationID/DOLocationID used as reference

All rows now have coordinates of pickup/dropoff locations



Data Cleaning

> summary (ogdataiburation)

1st Qu. Median Mean 3rd Qu. Max. NA S
-29.12 7.B65 12.70 17. 24 20.68)5743.92 3

> summary(ogdatastrip_distance)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 1.03 1.80 4.28 3.554103297. 24

= QOriginal dataset has 3 million rows; used 1 million randomly extracted samples for efficiency

= Mostvariables often have missing/unusual values; only considered spatial & temporal variables for cleaning
=  Spatial variables (PULocationlD, DOLocationID) are intact for all rows; temporal variables more vulnerable
"Duration”: Gap between pickup and dropoff time (new variable); negative or extreme values removed
= "trip_distance": Extreme values removed (by IQR method)

= 859762 rows remain after data cleaning



Exploratory Data Ané

'
1. Pickup/Dropoff Counts by Locatioz

2. Pickup Counts by Time Periods

p



Pickup Counts by Taxi Zone
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Pickups are heavily focused in Manhattan borough,
especially midtown Manhattan area

'‘Midtown Center' has the most pickups of 44892

LaGuardia Airport and JFK Airport are the only two non-
Manhattan area with significant volume of pickups

Taxi zones in gray have no pickup recorded

"Governor’s Island/Ellis Island/Liberty Island" always
have zero pickup counts since these areas can only be
accessed by ferry boats



Dropoff Counts by Taxi Zone

Latitude

NYC Yellow Cab Dropoff Counts by Taxi zone
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Pickup Counts by Hour

Pickup Counts

Distribution of Yellow Taxi Pickup Counts by Hour
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12 - 1PM has most pickup counts

Pickup counts decline rapidly from 5 PM



Pickup Counts by Weekday

Distribution of Yellow Taxi Pickup Counts by Weekday

. (155550
= Thursday has the most pickup counts
= Significantly less pickups on Mondays

Wed
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Objective

* To understand the general
traffic flow based on demands

* To capture the traffic flow from
outer areas into the city during

commuting hours and
movements into the bar area

during night times




Work Flow

Pick-Up Drop-Off
Demand Demand
Clustering Clustering
¢ Pickup Location e Drop off Location
e Pickup Time e Drop off Time
‘ ‘ Pick Up Cluster  Drop Off Cluster Demand
PULocationID Pick Up Cluster DOLocationID Drop Off Cluster 4 3 199527
1 1 1 1 3 3 146144
3 2 3 2 3 5 142982
4 3 4 3 4 5 88819
° 1 ° 1 3 4 75719
7 2 7 2
. . - - 5 3 66672



Preparing the Data

DOLocationlD
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Cyclic Time Behavior

Zone 88 in Manhattan

Demand Scatter Plot for Location 88
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Cyclic Time Behavior

Zone 33 in Brooklyn

Demand Scatter Plot for Location 33
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Fourier Transform on Time Series
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Demand Scatter Plot for Location 88
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(Lecture 7 — SpacelTime-Discrete)

A multi-resolution wavelet decomposition of a function f5(t) is an
expression of the following form:

J 21

fo(t) = Bsoodoo(t) + D D Bsjihjk(t)

Jj=—00 k=0

Bs 00 is the scaling coefficient. The wavelets 1)) ,(t) are generated from a
single wavelet v(t), the so-called mother wavelet, by scaling and
translation. The form of basis functions are known.

Fourier transform is a special case when 9(t) = e=2'"¢

The temporal demand fs(t) can be represented by
Fourier coefficients:

K K
fs (t) — 65,0 + Z ﬂs,k COS(QWkt) + Z Vs, k Sill(2ﬂ'kt),



Our Model

Y(s,t) = fs(t) +ws + €(s,t)

Y (s,t): Observed demand (pickup counts) at location s and time ¢.

fs(t): Temporal demand pattern at location s, capturing the temporal
variability such as daily or weekly cycles.

ws: Spatial constraint, representing the inherent spatial connectivity.

€(s,t): Error term capturing random noise or unmodeled variability.

K K
fs (t) — )Bs,[] + Z Bs,k COS(QWkt) + Z Ys.k Sin(zﬂ'kt)
k=1 k=1

(Lecture 7 -
Spacelime-Discrete)

Y(s, t) = M(s, t) B+ w(s, t) + (s, t)

forse D and t € [0, T].

M(s, t) are local space-time covariate vectors
(3 is an associated coefficient vector

w(s, t): spatial temporal random effect.

€'s are pure error terms.

Use temporal basis fi(t), -, fm(t): w(s,t) = > " fi(t)vi(s)
we need to estimate spatially varying basis coefficients ;(s) (spatial
functional data analysis)



Methodology (chavent, 2017)

Aggregation measure based on the
combined dissimilarity of two points
iandj:

In matrix form:

Au = (1 - a)Ag +ad;.

dal{i}: {7}) = (1 — @) ——"—

TR 2
Lif
w; + w; i T

e

Squared dissimilarity
based on features

Wy
i 2
dlt_}
w,—}—wj \

Squared dissimilarity
based on spatial
relationship

* DO: captures how different two locations are
based on their feature patterns

* D1: captures how geographically
unconnected two locations are based on
spatial adjacency

* When alpha =0, the feature coefficients are

Tk s
Standard Ward's Method: {(Cx) = > Z Jd&

I.(C3) = (1 —a ZZ“”’

iECy jeCy

el jely

wiw
i+ ), 5mty

ieCy jecy

clustered without any spatial smoothing




Methodology (chavent, 2017)

Model

Component

fs(t): Temporal

demand patterns

w,: Spatial effect

€(s,t): Random
noise

Combined

effects

ClustGeo
Component

Feature-based

dissimilarity Dy

Spatial
dissimilarity D

Not explicitly

modeled

Combined

dissimilarity A,

Description

Temporal patterns (Fourier coefficients) are
used to compute Dy, capturing pairwise
dissimilarities in temporal behavior across

locations.

Spatial relationships (from adjacency or
proximity) are encoded in 1, penalizing
clusters that split geographically connected

locations.

ClustGeo assumes that noise is minor

compared to the signal in Dy and D).

A, = (1 — a)Dy + aD; balances
temporal and spatial effects in the clustering

process.



Using ClustGeo in R

Hierarchical clustering with soft contiguity constraint.

The function hclustgeo implements a Ward-like hierarchical clustering algorithm with soft contiguity constraint.
The main arguments of the function are:

o a matrix D@ with the dissimilarities in the “feature space” (here socio-economic variables for instance).

o a matrix D1 with the dissimilarities in the “constraint” space (here a matrix of geographical dissimilarities).

o a mixing parameter alpha between 0 an 1. The mixing parameter sets the importance of the constraint in
the clustering procedure.

o ascaling parameter scale with a logical value. If TRUE the dissimilarity matrices D@ and D1 are scaled
between 0 and 1 (that is divided by their maximum value).

The function choicealpha implements a procedure to help the user in the choice of a suitable value of the
mixing parameter alpha.

Both hclustgeo and choicealpha can be combined to find a partition of the n = 303 French municipalities
including geographical contiguity constraint. The two steps of the procedure are :

1. Find partition in K clusters of the 303 municipalities using the dissimilarity matrix D@. The clusters of this
partition are homogeneous on the socio-economic variables and no contiguity constraint is used.

2. Choose a mixing parameter alpha in order to increases the geographical cohesion of the clusters (using
the dissimilarity matrix D1) without deteriorating too much the homogeneity on the socio-economic
variables.

https://cran.r-project.org/web/packages/ClustGeo/vignettes/intro_ClustGeo.html

ClustGeoin R

DO "feature': time coefficients
D1 "constraint": geographical
dissimilarities

Using ClustGeo:

. Compute the Features

. Compute the Spatial Constraints
Pick alpha

. Cluster using hgeoclust()

—

I NEANN



https://cran.r-project.org/web/packages/ClustGeo/vignettes/intro_ClustGeo.html

Fourier Transform on Time Series

. Beneficial for capturing cyclical behaviors

. Steps

1.
2.

Prepare the data

Centerthe demand (helps the analysis
focus on the deviation from the baseline)

Use fft() in R to decompose the time series

Extract the first four of real and imaginary
components

¢

Calculate the pairwise distance
between the rows of scaled temporal

data (used dist() function)

Heatmap of the scaled temporal coefficients

oda
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Zbew|

ghew
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(Pick Up) Nearest Neighbor Graph, K=5

Spatial Constraint

40.9
The spatial connectivity w_s is derived
from k-nearest neighbor graph to define
spatial connectivity. wRis
1 if locations s; and s; are spatially connected, o
W;; =
’ 0 otherwise. 3
® 407
40.6
Calculate the spatial dissimilarity
matrix as.dist(1-adj_matrix)
-74.2 -74.1 -74.0 -73.9 -73.8 -73.7

Longitude



I Picking the best alpha

* QO: Temporal homogeneity

* Q1: Spatial contiguity

Qnom

1.0

0.0 02 04 06 0.8

Pick up Demand

K= 5 clusters
of 71% of 11%

% " e-e-®-0-9-0_,

—e— based on DO
—e— based on D1

| I T T T |
0.0 0.2 0.4 0.6 0.8 1.0

alpha

Qnom
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Drop off Demand
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P e
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Pick up Demand by Clusters

Clusters with Spatial Constraints
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Pickup Cluster Avg Trip Distance Median Trip Distance Avg Passenger Count Avg Fare Amount
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100%:

Th%

50%

Proportion of Pickups

ta
32
=
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0.271
3.237
1.915
1.817
2.127

Proportion of Pickups by Borough for Each Cluster

1 2 3 4 5

Cluster

0.00 1.791
3.27 1.373
1.51 1.294
1.49 1.368
1.79 1.410

71.233
22.088
13.358
13.480
14.157

. Staten Island

Avg Duration

0.882
14.061
12.007
12.838
12.952

Total Trips
201
36,348
375,302
348,398
99,513



Taxi Pickup Analysis: Time Effect

Pick Up Demand by Hour and Cluster
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Drop off Demand by Clusters

Clusters with Spatial Constraints (Drop-off)
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Total Trips
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250,255



Taxi Dropoff Analysis: Time Effect
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Overall Traffic Flow: Matched Clusters

Traffic Flow Between Pickup and Drop-off Clusters Top 10 Traffic Flows Between Clusters
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Traffic Flow: Into Manhattan

Clusters with Spatial Constraints Clusters with Spatial Constraints (Drop-off)
To analyze the traffic flow into
Manhattan, we gathered the trips
Cluster Cluster from w’—z (pICk u p) to

8 - g N clusters 3,4,5 (drop off)
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Traffic Flow: Into Manhattan
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Traffic Flow: Out of Manhattan

Clusters with Spatial Constraints Clusters with Spatial Constraints (Drop-off)
To analyze the traffic flow out
of Manhattan, we gathered the
Custer Cluster trips from clusters 3,4,5 (pick up)
g . 3 - to clusters 1,2 (drop off)
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Traffic Flow: Out of Manhattan
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Traffic Flow: within Manhattan

Clusters with Spatial Constraints Clusters with Spatial Constraints (Drop-off)
For the traffic flow within Manhattan,
we gathered the trips from (pick up)
Cluster Cluster and tO (d I’Op Off) ClUSte I’S 3 4 5
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Traffic Flow: within Manhattan

Within-City Demand Heatmap (Hourly by Day) Total Within-City Demand by Day
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Traffic Flow Analysis

into city 4.47 (0.18) 1.32 (0.07) 26.62 (1.81) 21.09 (1.43) 5755

out of city 3.57 (1.83) 1.44 (0.51) 33.91 (14.74) 22.54 (2.17) 21625

Within city 2.16 (0.72) 1.36 (0.06) 14.41 (2.8) 13.17 (2.62) 801588
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